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A B S T R A C T

Stream water quality is directly influenced by land use and human practices in the surrounding environment.
Understanding such effects and the spatial extent of impacts is essential to generate reliable information for
ecosystem-based management of water resources. We identified sources of impact on water quality and char-
acterized indicator-specific landscape influence on samples collected during base flow along the Chubut River
(43 °S, 69 °W). We modeled Total Nitrogen (TN), Total Phosphorous (TP), Soluble Reactive Phosphorous (SRP)
concentrations and δ15N of particulate organic matter along the river, as a function of effective contribution
areas (AEC) of Land Use/Land Cover (LULC). AECs were calculated by assuming that landscape influence decays
exponentially with the Euclidean distance between a given LULC parcel and the sampling point. We calibrated
the model to the observations by estimating an indicator-specific decay rate. Agriculture and barren lands were
the main sources of phosphate nutrients whereas urban areas were the main source of TN. Radius of landscape
influence for SRP (100–180 km) was larger than for TP (10–25 km), reflecting different patterns of mobilization
and delivery in the catchment. δ15N variation was explained by vegetation cover but the influence rapidly
decreased (1–4 km) reflecting a mostly autochthonous source of organic matter.

1. Introduction

Spatial and temporal variability of stream water quality is de-
termined by natural processes and landscape characteristics within
catchments such as land cover, geology, soil type, atmospheric de-
position, climate and topography. These landscape characteristics affect
the source, mobilization and delivery of nutrients and other con-
stituents from catchments to streams and rivers (Lintern et al., 2017).
Land changes and land management affect these natural processes by
providing external sources of nutrients (e.g., municipal and industrial
sewage effluents, addition of fertilizers; Drewry et al., 2006), affecting
mobilization (e.g., erosion due to livestock presence; Fuls, 1992) and
delivery (e.g., increased hydrological connectivity in agricultural
catchments; Ocampo et al., 2006). The nutrient enrichment of waters
causes acidification and eutrophication resulting in a decline in overall
water quality restricting its use for general and drinking purposes and

degrading aquatic ecosystems (Allan, 2004; Strayer et al., 2003). In this
regard, nitrogen and phosphorus are particularly relevant as both are
drivers of aquatic eutrophication (Levine and Schindler, 1989) and are
linked to the health of humans and other organisms.

Effective nutrient assessment and management is challenging given
that nutrients in rivers may originate from a variety of sources, take
numerous pathways, and transform from one chemical species to an-
other. A great effort has been made to model the relationship between
stream water quality and landscape configuration in order to distin-
guish sources of pollution and assess their impact on ecosystem func-
tioning. Simple and most popular methods use lumped variables (e.g.,
% Land use/Land cover, LULC) for landscape representation within a
pre-designated influence area (e.g., subwatershed: Wang, 2001). These
methods do not take into account the fact that the influence of the
landscape depends not only on the sources of impact but also on their
location and distance to the river. A great deal of research has been
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conducted to capture the spatial scale of landscape-level drivers de-
veloping a variety of spatial statistical models (Blanchet et al., 2008;
Ver Hoef et al., 2006). Distance-weighted approaches use a mathema-
tical function to assign weights to LULC values according to the distance
to the sampling point. Previous studies that have accounted for varia-
tions in landscape configuration using distance weighting measures
showed an improvement in models predictions compared to traditional
methods (Grabowski et al., 2016; Peterson et al., 2011). Distance-
weighted metrics have been calculated based on Euclidean measures
(King et al., 2005; Peterson et al., 2011), estimates of flow length
(Zhang, 2011) and hydrologically active distances (i.e., the distance
that water would hypothetically travel throughout a landscape,
Grabowski et al., 2016; Peterson et al., 2011). The decline in influence
of surrounding landscape has been represented by a variety of decay
functions; both inverse distance and exponential functions assume a
smoothly decreasing influence with increasing distance (King et al.,
2005; Van Sickle and Burch Johnson, 2008). The exponential model is
especially appropriate for weighting land use effects on nutrients that
are gradually depleted along flow paths or transmitted from a landscape
area to the stream channel (Soranno et al., 1996; Zhang, 2011). Besides,
the exponential function can be subjected to an optimization procedure
to estimate the characteristic influence distances for given in-stream
indicators (Van Sickle and Burch Johnson, 2008).

The Chubut watershed in the homonymous Patagonian province of
Argentina is the main source of fresh water for 250,000 people and
supports a wide variety of activities, including agriculture, cattle-
ranching, hydropower production and urban sprawl. Although there is
a growing concern about those human activities and practices that are
known to affect water quality and stream condition, there is a lack of
integral surveys and analyses of water quality throughout the wa-
tershed, an obvious information void for water management and con-
servation.

In this study we applied an exponential distance weighting function
based on Euclidean distance metrics to identify both LULC impacts on
water quality and the extent of landscape influence. The novel aspect of
this study is a model optimization that allows identifying sources of
nutrient variation while also estimating the typical radius of landscape
influence for each water quality indicator. With this approach we aimed
to a) account for dilution and/or metabolization rates from the source
to the river network and in-stream, b) allow for specific behaviors for
different water quality parameters and c) estimate the absolute con-
tribution of each nutrient for each source (LULC type). We used soluble
reactive phosphorous (SRP), total phosphorous (TP), total nitrogen
(TN), and nitrate (NO3

−) concentrations as measurements of water
quality and evaluated the use of nitrogen stable isotopes in particulate
organic matter (δ15N-POM), as an indicator of terrestrial and in-stream
sources of riverine organic matter (Kendall et al., 2001). This analytical
framework was applied on data gathered following a Lagrangian field
design (Fig. 1).

2. Materials and methods

2.1. Study site

The Chubut River originates in the western extra Andean region of
Patagonia (Rio Negro province) and flows for about 1000 km, first
south and then east across the Chubut province and into the Atlantic
Ocean (Fig. 1). The average discharge is 46.4m3 s−1 and the total area
of the Chubut basin is 57,400 km2. Given the basin´s geomorphic and
climatic characteristics, in particular the west – east precipitation gra-
dient, it is divided into 3 major sub-basins, upper, middle and lower
(Coronato and del Valle, 1988). The main tributaries are located in the
upper basin. The central drainage basin crosses the Patagonian table-
land (heights ranging from 200 to 600m a.s.l.) without receiving any
significant tributary. At 145 km from the estuary, the Florentino Ame-
ghino dam forms a 71 km2 reservoir lake, inaugurated in 1963 for

energy production, flood control, irrigation, and water provision. The
lower basin is characterized by alluvial plains and fluvial terraces, with
heights ranging from 20 to 150m.a.s.l.

In terms of discharge, the Chubut River's hydrograph presents two
annual peaks, one in spring due to snowmelt and the other in late fall
due to rainfall. Precipitation in the watershed shows a marked gradient
over a short distance: mean annual rainfall is 500–600mm in the
headwaters, 150mm in the middle basin and, 250mm in the coastal
area. Most of the Chubut River is on the Patagonian Steppe, where the
low precipitation has resulted in xerophytic, herbaceous-shrub-like
steppe vegetation. In several parts of the upper and middle basins, the
riparian corridor consists solely of the exotic willow, Salix fragilis, but in
some lower sections the native willow S. humboldtiana is also present.
The Chubut River watershed is under the influence of strong and dry
westerly winds. In comparison to other regions in the world, wind in
Patagonia is a relevant meteorological factor given its high intensity
and persistence (15–22 km h−1 mean annual speed, 65 and 75% of the
daily observations in the year, Paruelo et al., 1998).

2.1.1. Watershed land use and land cover
Forests cover a relatively small portion in the headwaters of the

watershed (Fig. 2). There are also some croplands in the upper basin,
representing a third of the total agricultural land cover in the wa-
tershed. The middle basin is dominated by bare lands, followed by
shrubland and grassland with almost no agricultural or urban areas but
some rural residential areas are associated to sheep ranching (Fig. 2).
Traditionally based on continuous grazing, sheep grazing is the main
economic activity in the upper and middle basins and is one of the main
drivers of vegetation cover modification (Bertiller and Bisigato, 1998)
which has exposed denuded soil to surface runoff and wind erosion (del
Valle et al., 1997). In the lower basin, croplands and urban areas be-
come more significant (Fig. 2). This area concentrates 50% of the
agricultural activity of the Chubut province, with alfalfa and horti-
culture as the main crops (C.F.I. (Consejo Federal de Inversiones),
2013). Cattle ranching and feedlots are increasingly common in the
lower basin. Agriculture in the lower valley is based almost completely
on flood irrigation. Man-made water return channels have not been
completed, creating a diffuse water return system throughout the
agricultural valley. In the upper section of the lower valley, between the
Florentino Ameghino dam and the beginning of the agricultural area,
there are important deposits of kaolin clay (Fig. 2), which have been
exploited by open-cast mining since 1939 (Domínguez and Cavero,
1999).

2.2. Land use / land cover data

A land use / land cover map was generated by combining data
obtained from three sources of information. A base land cover layer was
taken from the Latin America and the Caribbean map of the SERENA
Project (Blanco et al., 2013) which, for the Chubut basin, includes seven
categories at a spatial resolution of 500m: wetland, temperate shrub-
land, temperate broadleaf evergreen forest, temperate broadleaf de-
ciduous forest, temperate grassland, salt flat and barren land. Given
that the SERENA project map lacks land use information, we analyzed
high resolution satellite images within QGis (v.2.6.1, OpenLayers
Plugin) and digitized polygons for urban areas, rural residential areas,
cropland and clay mining areas. The list of clay mines (active and
abandoned) and their location were obtained from the website of the
Ministry of the Environment and Sustainable Development of the
Chubut province. Polygons from each land use category were rasterized
at a spatial resolution of 500m and then overlapped with the SERENA
land cover map. For this study we analyzed eight LULC categories as
drivers (i.e. predictors) of water quality in the Chubut river watershed
(Fig. 1): temperate shrubland, evergreen and broadleaf deciduous forest
(merged together into “temperate forest” category), temperate grass-
lands, barren land, urban areas, rural residential areas, mining and
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cropland. We did not include wetlands and salt flats because they are
not accurately mapped at the regional scale of the SERENA classifica-
tion (analyses not shown).

2.3. Sampling and water quality indicators

A continuous synoptic sampling regime was designed in order to
identify hot spots and spatial variation in natural factors and human
impact sources. Twenty one sites were sampled along the Chubut River
and main tributaries in early fall (8–23 April 2015) covering the total
extension of the Chubut River (Fig. 1). We decided to sample in early
fall, before the wet season and during baseflow conditions, in order to
capture a “base line state”. To design the sampling configuration we
used the land use/land cover information contained in the LULC map
(see previous section). We also explored bankfull channel widths, ri-
parian vegetation cover and slope. Bankfull channel width and riparian
vegetation were measured by analyzing high resolution satellite images
within QGis (v.2.6.1, OpenLayers Plugin) and slope was calculated
using the SRTM 30m Digital Elevation Model (U.S. Geological Survey,
2014). In order to select the location of sampling sites we explored the
distribution of land uses, riparian vegetation, bankfull width and slope
measurements plotting them against river distance from the mouth to
detect homogeneous river segments and/or discontinuities. Sample
sites were then chosen to represent the identified river segments in the
catchment.

Water samples were gathered to carry on SRP, TP, TN, NO3
− and

δ15N – POM analyses. For SRP, NO3- and δ15N-POM determinations, 3 L
of water were filtered through a pre-combusted GF/F filter (0.7 μm).
Aliquots of the filtered water were stored frozen for SRP and NO3

−

analysis until laboratory determination was carried out. Filters were
stored folded in aluminum foil, frozen and then freeze dried. For TP and

TN analyzes, unfiltered water was fixed with sulfuric acid (1ml of
concentrated acid in 500ml of sample) and stored frozen until their
determination. Four TP and TN samples and three POM samples from
the middle basin were accidentally spoiled during sampling.

In the laboratory, SRP, TN and TP samples were analyzed following
the methodology described in APHA (2004). NO3

− samples were ana-
lyzed at UC Davis Analytical Lab using the flow injection analyzer
method with a detection limit of 0.05mg/L NO3- - N. For stable isotope
analysis, the top layer of a quarter of the filter was removed and placed
in a tin boat, followed by combustion in an elemental analyzer (Costech
ECS 4010) coupled to a Thermo Fisher Delta V Plus isotope ratio mass
spectrometer at the Stable Isotope Laboratory facility within the Uni-
versity of California, Merced. Stable isotope ratios are expressed as δ15N
values, measures of ‰ (ppt) difference between the nitrogen isotope
ratios of a sample relative to standard N2 of the atmosphere (Mariotti,
1983). The working standard were acetanilide (δ15N = -0.75‰), Gly-
cine (δ15N=11.25‰) and Peach (δ15N=1.98‰). Repeated analyses
of the standards during these analyses showed a standard deviation
of± 0.47,± 0.06 and±0.76 respectively.

2.4. Conceptual model

In order to model the effect of land use and land cover on water
quality and to assess the extent of the landscape influence we made
three general assumptions/simplifications, which led us to the model
represented in Fig. 3:

1) Water quality at a given sampling point in the river is affected by the
watershed area upstream from that point and the influence of a
given site within the upstream area is inversely related to the dis-
tance to the point of interest.

Fig. 1. Location of study site in Patagonia Argentina. Land use / land cover map is shown for the Chubut watershed. Sites sampled for water quality indicators on
April 2015 are represented as yellow dots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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2) The landscape effect decays exponentially with distance (linear in
logarithmic scale). The effect of each upstream pixel on any in-river
sampling point depends on the Euclidean distance between them.

3) The intercept of the decay function depends on the LULC-indicator
combination, whereas the rate of decay with distance depends ex-
clusively on the indicator. In other words, the LULC class of a given
pixel determines the initial concentration of each specific nutrient
supplied to locations downstream, whereas the fate of a given nu-
trient as it moves downstream (rate of dilution or metabolization)

depends only on the indicator and not on its source.

2.5. Landscape influence: distance weighted effect

Given the conceptual model described above (Fig. 3), we modeled
the effect of pixels of different LULC classes upstream of the sampling
point by a weighing function. For a given indicator, the effect of pixel i
on a given in-river sampling point j is controlled by the weight:

Fig. 2. Accumulated areas of land use and land cover delineated every 5 km from headwater (Rkm=0) to the mouth (Rkm=1025). Dashed lines show the limits
between the upper-middle and middle-lower basins.

Fig. 3. Schematic representation of the general model applied to evaluate the effect of a pixel i on water quality at any point in the stream. The effect of a given pixel i
on the water quality measured in a sampling point depends on 1) the LULC class which regulates the intercept of the decay function for a specific water quality
indicator (initial nutrient concentration), 2) the nutrient, which defines the intercept in combination to the LULC class and the slope of the decay rate, and 3) the
Euclidean distance between the pixel i and the sampling point.
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Wi=0.5 (dij/D1/2) (1)

Eq. (1) is the exponential curve reparametrized as a function of the
half-life. The weight (Wi) decays exponentially as a function of the
Euclidean distance between the pixel i and the sampling point j (dij) and
a decay parameter specific to each indicator (D1/2 or Half Distance). D1/

2 represents the distance in km at which the concentration of the in-
dicator decays to 50% of the initial concentration (intercept of the
decay function in Fig. 3) and expresses the extent or radius of landscape
influence in kilometers.

For a given indicator, an effective contribution area (Aec) of LULC
class k to a given in-river sampling point is calculated as the sum of all n
upstream pixels of class k, weighed by their distance to the point with
Eq. (1):

= ∑ =
A a W this studyec k i

n
i k( ) 1 ( ) (2)

The parameter α in Eq. (2) is the unit pixel area (in our case
0.25 km2), so the effective contribution area is measured in km2. In
summary, the effective contribution area by a LULC class to a given
sampling point and for a given indicator will depend on the area and
configuration of upstream pixels of that LULC class and by the in-
dicator-specific decay rate. A schematic representation of the applica-
tion of the weighing procedure in Eqs. (1) and (2) is provided in Fig. 4.

For each sampling point a polygon representing the drainage area
(i.e. watershed) was delineated using the SRTM 30m Digital Elevation
Model (U.S. Geological Survey, 2014) and the Batch Watershed Deli-
neation (BWD) tool available in the ArcHydro toolset (in Arc Map 10.1).
The LULC map (raster) was converted into a point file and attributes
(UTM coordinates and class value) were assigned to each point. For
each sampling point we extracted the LULC points falling within the
corresponding watershed and exported the attribute tables as text files
(one text file for each watershed/sampling point). Finally, we calcu-
lated Euclidean distances for each LULC point to the sampling points.
These files were used as the inputs to calculate: 1) the W factor for each
pixel relative to each sampling point (Eq. (2)) and 2) the effective
contribution areas of each LULC class within each watershed and

sampling point (Eq. (1)).
Weighted percentages of LULC have been used to model the effects

of LULC on water quality (e.g., Grabowski et al., 2016; Peterson et al.,
2011). However, using the percentage of a LULC type as explanatory
variable does not fully represent the declining effect of individual LULC
types because it conceals the actual area of given LULC classes affecting
a sampling point. For instance, a small percentage of a given LULC class
can result from either a small area of that class (small potential for
influence) within a small watershed or a large area (large potential for
influence) within a much larger watershed. In other words, when using
percentages, explanatory variables are not independent among them-
selves; i.e. the portrayed response to individual variables is affected by
the value that the other ones take. Therefore, in this study and for the
purpose of identifying a typical radius of landscape influence for each
water quality indicator, we used weighted areas (effective contribution
areas) of LULC instead of weighted percentages.

2.6. Data analysis

To model the variation in water quality as a function of LULC, we
fitted multiple regression models with the concentration of TP, TN, SRP
and δ15N-POM measured at each sampling point as separate response
variables and effective contribution areas of the 8 LULC classes con-
sidered upstream from each sampling point (Eqs. (1) and (2)) as the
independent variables. Separate models were fitted for each of the 4
water quality indicators. Each of the four models has 9 free parameters
to be estimated: one Half Distance (D1/2) characteristic of the indicator
(i.e., the decay rate of the nutrient, Fig. 3) and eight LULC-dependent
constants that control the initial concentration of the indicator (i.e.,
intercept of the decay function in Fig. 3) provided by each of the eight
LULC classes.

Most of the sample sites were located on the same stream line, hy-
drologically connected, and might therefore, be spatially correlated. To
accommodate this structure in the data, we fitted the models using a
generalized least squares (GLS) technique which allows for dependence
between observations (Pinheiro and Bates, 2000). Within the GLS

Fig. 4. Schematic calculation of a specific LULC effective contribution area for a given water quality indicator. The figure shows two sampling points and their
associated drainage areas (watersheds). A grid representing the LULC map is shown and three shaded pixels represent a given LULC class. Since sampling points are
located on the same streamline, the associated watersheds overlap and watershed 1 contains watershed 2. The W factor decays exponentially with the linear distance
to the sampling point and the shape of the exponential function is determined by the decay parameter D1/2. The effective contribution area is calculated by adding up
the relative contribution (W factor) of each pixel classified as K1 falling into the corresponding watershed (three pixels for watershed 1 and two pixels for watershed
2) multiplied by the pixel´s area. The exponential function (the decay rate) is specific to each nutrient type and homogenous for different LULC classes.
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framework, we added an exponential spatial residual structure indexing
each observation by a two dimensional spatial location vector (x and y
coordinates). Models were fitted in R software (R Development Core
Team, 2016) using the “gls” function within the “nlme” package
(Pinheiro et al., 2016).

For each water quality indicator we performed a model selection
routine according to the Akaike Information Criteria with correction for
small sample size (AICc). AIC defines that the model with the smallest
AIC value gives the most parsimonious description of the data. In
general, models with Δ AIC (AIC differences) of> 10 have essentially
no support and can be omitted from further consideration; models with
Δ AIC < 2 have substantial support, while models with 4 < Δ
AIC < 7 have considerably less support (Burnham and Anderson,
2002).

The aim of the model selection routine, as applied to each of the
water quality indicators, was two-fold: 1) identifying the sources of
impact (LULC classes) and 2) estimating the spatial extent of landscape
influence through the value of D1/2 in Eq. (2) that best explains the
variation in water quality along the watershed.

In order to analyze the landscape influence for each water quality
indicator we selected 25 values for the parameter D1/2 (see Eqs. (1) and
(2)) ranging from 0.5 to 180 km to evaluate model goodness of fit and
search for the maximization in the correlation between water quality
and LULC classes. For each water quality indicator, we fitted all pos-
sible models, using Maximum Likelihood estimations, with the full
model as a starting point. The selection routine allowed identifying a set
of models (the ones with ΔAICc< 2) with the combination of LULC
classes and values of D1/2 (representing the scale of landscape influence
in km) that best explained variation in water quality along the wa-
tershed. Final model estimations were done through Restricted
Maximum Likelihood (REML) estimations. Model ranking was done in
R software (R Development Core Team, 2016) using the “dredge”
function within the “MuMIn” package (Barton, 2016).

3. Results

3.1. Spatial variation of water quality indicators

Considerably different spatial patterns were found for the different
water quality indicators along the river. SRP and TP concentrations
exhibited a marked increase in the downstream direction (Fig. 5a and
b). TN on the other hand, increased gradually within the upper basin
(91.9–285.1 μg/L), but this trend did not persist along the length of the
Chubut River, with the exception of the last sampling point which
showed an abrupt increase in TN (481.1 μg/L) (Fig. 5c); this sampling
point was located just downstream of Trelew, the largest city in the
watershed. All NO3

− samples were below the detection limit
(< 0.05mg/L). The nitrogen isotopic signature (δ15N) of POM was
more positive (4‰) in headwaters decreasing gradually as the river
flowed through the upper and middle basin before increasing again in
the lower basin reaching similar values of δ15N as in the upper sections
of the river (Fig. 5d).

3.2. Water quality modeling

SRP variation was largely explained and positively related to
cropland and barren land in upstream areas (Models 1–6, Table 1;
Figs. 5a and 6 ). D1/2 value ranged from 100 to 180 km indicating a
large spatial landscape influence for this indicator. TP variation was
better explained by cropland, forest and barren land (Figs. 5b and 7 ;
Models 7–10, Table 1) for shorter radius of influence (10–19 km). For
longer distances (22–25 km) only cropland and barren land were im-
portant (Models 11 and 12, Table 1).

For TN, the model selection did not yield a consistent set of models
(Models 13–36, Table 1). All values of D1/2 yielded similar models in
terms of AIC and explanatory variables changed with the extent of

landscape influence. However, urban area was the most important
variable and was present in every model. For shorter distances, mining,
barren land and forested areas were also important (Models 13–18,
Table 1, 1–16 km,). As the radius of influence increased to intermediate
distances (25–31 km, Models 21–23, Table 1) rural areas became sig-
nificant. For δ15N-POM model selection yielded two models that better
explained N signature of POM along the watershed (Models 37 and 38,
Table 1, Figs. 5d and 8 ). The δ15N signature was more depleted as
barren lands, grassland, and forested areas increased. The extent of
landscape influence for this indicator was 1–4 km.

4. Discussion

In this study we used a spatially explicit framework based on a
parametric distance weighted metric to explain the relationship be-
tween water quality and LULC in the Chubut River and its main tri-
butaries. The methodology we applied allowed us to identify not only
the human impacts and the vegetation cover effects on water quality
but also the spatial extent of landscape influence for each water quality
indicator.

In order to model the distance-related landscape influence we ap-
plied an exponential decay rate based on Euclidean distances. The ex-
ponential function is the simplest approach to represent a decaying
effect with a constant rate and it has proven to perform well when
modeling progressive depletion of nutrients caused by land or in-stream
processes (Peterson et al., 2011; Smith et al., 1997; Van Sickle and
Burch Johnson, 2008; Zhang, 2011). Euclidean distances have also
shown to capture the same amount of water quality variation than total
flow-path distances (King et al., 2005). However, this metric might be
underestimating the extent of landscape influence given that overland
and in-stream flows represent longer distances than linear measures. In
this regard, the extents of landscape influence detected in this study are
the “minimum”. Nevertheless, they provide a valid metric for the
identification of the specific scales of landscape influence for each
water quality indicator (e.g., tens of kilometers for TP vs. hundreds of
kilometers for SRP). Calculation of flow-path distances would allow for
a better discerning of LULC overland flow to the stream from in-
stream processes (Van Sickle and Burch Johnson, 2008). Isolating both
effects would lead to a more realistic modeling of nutrient transporta-
tion because different processes might be taking place in each of the
transport phases. In our system, irrigation channels in the agricultural
valley, that divert the original flow of water in the stream network,
make it difficult to calculate actual flow-path distances. Further re-
search is being carried out to incorporate the irrigation channels into
the stream network by modifying the DEM using ArcHydro tools
(ArcMap 10.1).

Cropland and barren land explained the majority of SRP and TP
variation along the watershed, reflecting the pollutant load from agri-
cultural lands and the export of sediment-bound nutrients from barren
lands. In the lower valley, irrigation practices and artificial channel
networks facilitate the delivery of nutrients loaded from croplands to
the stream. On one hand, irrigation practices artificially recharge
groundwater, increasing water table levels (Hernández et al., 1983).
Higher interaction between ground and surface water and increased
subsurface flow affect delivery rates of dissolved nutrients leading to
increased concentrations in the stream (Ocampo et al., 2006). In ad-
dition, man-made drainage systems might have also affected the de-
livery of both particulate and dissolved nutrients by increasing surface
flow and hydrological connectivity between croplands and the stream.

Sheep grazing is one of the major causes of desertification in semi-
arid Patagonia (Benites et al., 1993) and is a serious environmental
concern. As plant cover decreases, soil degradation progresses (Verón
and Paruelo, 2010). Once soil is denuded, erosion caused by water and
wind increases markedly thereby diminishing the superficial soil layer
and causing increased evaporation, runoff, soil erosion, and nutrient
loss (Fuls, 1992). It is estimated that wind erosion affects nearly 50% of
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the Chubut province area (FAO, 1993). Therefore, it is likely that aerial
transport has a large effect on the total nutrient exported to the stream
and that our models is capturing both water and wind erosion pro-
cesses. Sediment export to the stream during rain events is an ac-
knowledged problem by the local community, where high sediment
concentrations disrupt the normal operation of water treatment plants
compromising drinking water supply in the lower valley (Kaless et al.,
2008). However, the consequences of desertification in terms of nu-
trient loss or exportation to the stream had not been previously ad-
dressed. Our study identified that barren lands are an important source
of phosphate nutrients which, coupled with agricultural loads, affect
water quality in the lower valley where the effects magnify and accu-
mulate (see Results section).

Landscape influence on SRP concentrations has a reach of over
180 km, representing a large scale of impact and also reflecting that
SRP accumulates along the stream pathway. The accumulation of SRP
in river water could be due to 1) the homogeneous flux of dissolved
nutrients from barren lands along the middle and lower basins and/or
2) the low utilization of inorganic P by the stream biota. Miserendino
(2007) showed a decrease in macroinvertebrate diversity and species
richness in the Chubut middle basin and attributed it to low resources
and high levels of suspended particles production. Her findings support
the hypothesis of low efficiency in the utilization of inorganic P ex-
ported from barren lands. While SRP was affected by areas further
upstream, TP was related to more local landscape influences
(10–25 km). A radius of influence between 10 and 25 km for the low-
ermost sites provides evidence that TP is mainly exported from barren
lands within the lower basin itself. In the upper basin, forest cover
decreases TP concentration in the stream. As vegetation cover protects
soil from runoff and wind erosion, it decreases particulate nutrients

mobilization from the catchment to the stream (Lintern et al., 2017).
According to the analysis presented herein, effects of forested lands on
water quality are more intense within a radius of 20 km. Given that TP
data for 4 sites in the middle basin are missing, the interpretation of the
radius of influence for TP is constrained to the effects of LULC on water
quality in the upper and lower basins.

Nitrate concentrations were below the detection limit. In ultra-oli-
gotrophic systems, with TN concentrations lower than 1mgN/l, in-
organic N is taken up rapidly to sustain primary productivity (Durand
et al., 2011). This might be the case for the lower Chubut River in the
fall (end of crop and irrigation season), when the system might be N
limited. TN was highly affected by urban areas. Given that NO3

−

concentrations were extremely low, TN was mostly represented by N in
either the organic phase or bound to sedimentary particles. Storm water
runoff through impervious surfaces and industrial effluents in the lower
valley could explain the abrupt increase in organic N in the lowermost
sampling point. The inconsistency in TN models might be reflecting that
different LULC classes produce different patterns of nutrient transport.
For example, Zhang (2011) found that the decay rate in nitrogen
transport from urban areas was lower than for other LULC classes. The
authors associate this to the higher heterogeneity in land cover com-
position of urban areas in contrast to vegetated lands. They state that
urban area classes are more prone to mask a variety of LULC types with
different hydrological conditions of nitrogen transportation (e.g., green
areas, impervious surfaces) than agricultural or forested areas. In this
study we assumed the same decay rate for different LULC classes but
future studies with higher resolution of field data and LULC maps
should test different values of D1/2 for different LULC classes. To ad-
dress these more complex scenarios, sampling with higher spatial re-
solution is already being carried out in the lower basin.

Fig. 5. Observed (black dots) and estimated
(empty dots) concentrations of (a) soluble re-
active phosphorous (b) total phosphorous (c)
total nitrogen and (d) δ15N of particulate or-
ganic matter along the Chubut River estimated
by generalized least squares using restricted
maximum likelihood. SRP=6.13+2.26
cropland + 0.20 barren land, areas were cal-
culated with a D1/2 value of 180 km (Model 6,
Table 1). TP= 23.61+ 19.04 cropland – 18.21
forest + 3.42 barren land, areas were calcu-
lated with a D1/2 value of 13 km (Model 8,
Table 1). δ15N – POM=4.53–18.49 forest
–4.56 grassland – 4.12 barren land, areas were
calculated with a D1/2 value of 4 km (Model 38,
Table 1). Observed values for panel (d) are
slightly moved in the x-axis to allow visuali-
zation of overlapping points.
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Stable isotopes in the POM fraction are used to trace relative con-
tributions of allochthonous (terrestrial) organic matter and auto-
chthonous materials derived from plankton and algae, aquatic macro-
phytes, and fragments and fecal matter from invertebrates and fish in
the river (Kendall et al., 2001). Other sources of allochthonous dis-
solved organic matter such as water from waste water treatment plants,
sewage overflows in urban areas or confined animal feeding operations
and agricultural runoff in farming areas could influence the δ15N of the
POM produced in the river (Finlay and Kendall, 1994). While an in-
crease in the δ15N of POM was observed in the lower basin, the overall
δ15N variation was mainly explained by vegetation cover and the area
of barren land. Interestingly, while variation in TN was related to
human settlements (see above), δ15N-POM was not. The local landscape
influence for the δ15N-POM indicator (1–4 km) suggests that landscape
influence rapidly disappears, probably due to the fact that the δ15N of
POM is determined by autochthonous sources. Future research in this
river system should evaluate stable isotope indicators at a smaller scale
redefining LULC maps to include specific human related categories
(e.g., feedlots, crop type, point sources) and increasing spatial resolu-
tion.

To summarize, we identified that in-stream SRP and TP concentra-
tions in the middle and lower basins are affected by the same human
related activities (agriculture and desertification) and in the upper
basin forest cover affect particulate phosphorous concentrations. The
differences in landscape influence reflect differences in dissolved and
particulate nutrients mobilization, metabolization and delivery pro-
cesses in the catchment. The source of organic matter in the Chubut
River (during baseflow and in the end of the crop season), as indicated
by N stable isotopes signatures in POM and its short landscape influ-
ence, is mostly autochthonous but in the lower reaches urban areas
contribute a large amount of allochthonous organic matter.

In order to improve our understanding of the sources of impact and
temporal variation of nutrient transport, it is necessary to increase the
amount and quality of the data used as inputs for the models. As a first
attempt to understand the relationship between landscape and surface
water quality in the Chubut River we used a regional LULC map which
lacks resolution for some important local landscape features that affect
nutrient retention and exportation such as wetlands. Our map also
lacked important human activities such as feedlot operations and lo-
cation of point sources. This is in our agenda and we are currently
working on generating a higher resolution local LULC map for future
analyses. Furthermore, seasonality should also be considered when
modeling nutrient contribution from the landscape to the stream. Given
that we used data from only one season we did not take into account the
effect of precipitation and stream events which mainly affect the mo-
bilization and delivery of sediments and particulate nutrients. In this
regard, this study reflects the relationship between landscape and water
quality during baseflow and lays the foundation for future sampling
strategies. As an example, we have learned that if we are pursuing to
use stable isotopes in POM as indicators of organic matter sources
sampling should be denser in order to capture the spatial variation
(1–4 km) detected in this study.

The analytical framework presented here could be useful to de-
lineate future scenarios of land use and evaluate the water quality re-
sponse. For example, we could evaluate what would be the response of
water quality if we restored vegetation and we could also identify
sensitive areas to be revegetated (i.e., areas of barren land that mini-
mize nutrient concentrations in the stream when they are replaced by
shrubland). In this study we applied a spatial autocorrelation structure
by fitting GLS. For more dendritic watersheds, other statistical tools
such as Linear Mixed Effects Models (LME) could also be useful to allow
for within-group dependence (i.e., samples sites within tributaries) at
the same time that autocorrelation structures are included.

Finally, we highlight some specific methodological characteristics of
the analytical framework applied: (1) Unlike other conceptually related
studies, we used areas of LULC around a sampling point as predictors,Ta
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avoiding the issue of collinearity among LULC classes due to lack of
independence when class percentages are used (King et al., 2005). (2) A
watershed was defined for each sampling point, treated as outlets, and
the weighted areas of each LULC category were only calculated based
on the cells upstream of each sampling point. This method prevented
the inclusion of downstream areas when measuring Euclidean distances
centered in a sampling point. (3) A parsimonious approach was chosen
by fitting exponential weighting functions on Euclidean distances
within watershed boundaries; this simple method might be desirable
when there is a constraint in sampling points. (4) We fitted all possible
models, evaluating all LULC classes, and compared them through a
model selection routine. Multiple regressions allowed us to factor out
the effect of one LULC variable and explore the independent regressions

among the remaining LULC variables and the water quality residuals
(see partial regression plots, Figs. 6–8). Typically, researchers calculate
many correlations between several stream indicators and LULC vari-
ables (see references in Van Sickle and Burch Johnson, 2008) but simple
correlations may lead to incorrect interpretations of the magnitude and
the direction of an effect (King et al., 2005). (5) We subjected the D1/2

parameter (shape of the exponential curve or rate of decay) to a model
optimization procedure which allowed us for the identification of the
scale of landscape influence on different water quality indicators; in-
formation highly relevant for delineating land management plans.

Fig. 6. Partial regression plots of Model 6 (Table 1) showing the partial correlation of cropland and barren land effective contribution areas (ECA) to SRP con-
centration after removing the linear effects of the other independent variables in the model. Shaded areas represent the 5 and 95% confidence intervals.

Fig. 7. Partial regression plots of Model 8 (Table 1) showing the partial correlation of cropland, barren land and forest effective contribution areas (ECA) to TP
concentration after removing the linear effects of the other independent variables in the model. Shaded areas represent the 5 and 95% confidence intervals.

Fig. 8. Partial regression plots of Model 38 (Table 1) showing the partial correlation of barren land, grassland and forest effective contribution areas (ECA) to N
signatures of POM after removing the linear effects of the other independent variables in the model. Shaded areas represent the 5 and 95% confidence intervals.
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